You are viewing documentation for Kubeflow 1.7

This is a static snapshot from the time of the Kubeflow 1.7 release.
For up-to-date information, see the latest version.

Component Specification

Definition of a Kubeflow Pipelines component

This specification describes the container component data model for Kubeflow Pipelines. The data model is serialized to a file in YAML format for sharing.

Below are the main parts of the component definition:

  • Metadata: Name, description, and other metadata.
  • Interface (inputs and outputs): Name, type, default value.
  • Implementation: How to run the component, given the input arguments.

Example of a component specification

A component specification takes the form of a YAML file, component.yaml. Below is an example:

name: xgboost4j - Train classifier
description: Trains a boosted tree ensemble classifier using xgboost4j

inputs:
- {name: Training data}
- {name: Rounds, type: Integer, default: '30', description: 'Number of training rounds'}

outputs:
- {name: Trained model, type: XGBoost model, description: 'Trained XGBoost model'}

implementation:
  container:
    image: gcr.io/ml-pipeline/xgboost-classifier-train@sha256:b3a64d57
    command: [
      /ml/train.py,
      --train-set, {inputPath: Training data},
      --rounds,    {inputValue: Rounds},
      --out-model, {outputPath: Trained model},
    ]

See some examples of real-world component specifications.

Detailed specification (ComponentSpec)

This section describes the ComponentSpec.

Metadata

  • name: Human-readable name of the component.

  • description: Description of the component.

  • metadata: Standard object’s metadata:

    • annotations: A string key-value map used to add information about the component. Currently, the annotations get translated to Kubernetes annotations when the component task is executed on Kubernetes. Current limitation: the key cannot contain more that one slash ("/"). See more information in the Kubernetes user guide.
    • labels: Deprecated. Use annotations.

Interface

  • inputs and outputs: Specifies the list of inputs/outputs and their properties. Each input or output has the following properties:

    • name: Human-readable name of the input/output. Name must be unique inside the inputs or outputs section, but an output may have the same name as an input.
    • description: Human-readable description of the input/output.
    • default: Specifies the default value for an input. Only valid for inputs.
    • type: Specifies the type of input/output. The types are used as hints for pipeline authors and can be used by the pipeline system/UI to validate arguments and connections between components. Basic types are String, Integer, Float, and Bool. See the full list of types defined by the Kubeflow Pipelines SDK.
    • optional: Specifies if input is optional or not. This is of type Bool, and defaults to False. Only valid for inputs.

Implementation

  • implementation: Specifies how to execute the component instance. There are two implementation types, container and graph. (The latter is not in scope for this document.) In future we may introduce more implementation types like daemon or K8sResource.

    • container: Describes the Docker container that implements the component. A portable subset of the Kubernetes Container v1 spec.

      • image: Name of the Docker image.
      • command: Entrypoint array. The Docker image’s ENTRYPOINT is used if this is not provided. Each item is either a string or a placeholder. The most common placeholders are {inputValue: Input name}, {inputPath: Input name} and {outputPath: Output name}.
      • args: Arguments to the entrypoint. The Docker image’s CMD is used if this is not provided. Each item is either a string or a placeholder. The most common placeholders are {inputValue: Input name}, {inputPath: Input name} and {outputPath: Output name}.
      • env: Map of environment variables to set in the container.
      • fileOutputs: Legacy property that is only needed in cases where the container always stores the output data in some hard-coded non-configurable local location. This property specifies a map between some outputs and local file paths where the program writes the output data files. Only needed for components that have hard-coded output paths. Such containers need to be fixed by modifying the program or adding a wrapper script that copies the output to a configurable location. Otherwise the component may be incompatible with future storage systems.

You can set all other Kubernetes container properties when you use the component inside a pipeline.

Using placeholders for command-line arguments

Consuming input by value

The {inputValue: <Input name>} placeholder is replaced by the value of the input argument:

  • In component.yaml:

    command: [program.py, --rounds, {inputValue: Rounds}]
    
  • In the pipeline code:

    task1 = component1(rounds=150)
    
  • Resulting command-line code (showing the value of the input argument that has replaced the placeholder):

    program.py --rounds 150
    

Consuming input by file

The {inputPath: <Input name>} placeholder is replaced by the (auto-generated) local file path where the system has put the argument data passed for the “Input name” input.

  • In component.yaml:

    command: [program.py, --train-set, {inputPath: training_data}]
    
  • In the pipeline code:

    task2 = component1(training_data=some_task1.outputs['some_data'])
    
  • Resulting command-line code (the placeholder is replaced by the generated path):

    program.py --train-set /inputs/train_data/data
    

Producing outputs

The {outputPath: <Output name>} placeholder is replaced by a (generated) local file path where the component program is supposed to write the output data. The parent directories of the path may or may not not exist. Your program must handle both cases without error.

  • In component.yaml:

    command: [program.py, --out-model, {outputPath: trained_model}]
    
  • In the pipeline code:

    task1 = component1()
    # You can now pass `task1.outputs['trained_model']` to other components as argument.
    
  • Resulting command-line code (the placeholder is replaced by the generated path):

    program.py --out-model /outputs/trained_model/data
    

Feedback

Was this page helpful?


Last modified December 28, 2022: update content links (#3406) (967d7a8)